Free arrangements and coefficients of characteristic polynomials
نویسندگان
چکیده
منابع مشابه
Division of characteristic polynomials and the division theorem for free arrangements of hyperplanes
We consider the triple (A,A′,AH) of hyperplane arrangements and the division of their characteristic polynomials. We show that the freeness of A and the division of χ(A; t) by χ(A ; t) confirm the freeness ofA. The key ingredient of this “division theorem” on freeness is the fact that, if χ(A ; t) divides χ(A; t), then the same holds for the localization at the codimension three flat in H. This...
متن کاملDeformations of Coxeter hyperplane arrangements and their characteristic polynomials
Let A be a Coxeter hyperplane arrangement, that is the arrangement of reflecting hyperplanes of an irreducible finite Coxeter group. A deformation of A is an affine arrangement each of whose hyperplanes is parallel to some hyperplane of A. We survey some of the interesting combinatorics of classes of such arrangements, reflected in their characteristic polynomials.
متن کاملCharacteristic Polynomials of Subspace Arrangements and Finite Fields
Let A be any subspace arrangement in R defined over the integers and let Fq denote the finite field with q elements. Let q be a large prime. We prove that the characteristic polynomial /(A, q) of A counts the number of points in Fq that do not lie in any of the subspaces of A, viewed as subsets of Fq . This observation, which generalizes a theorem of Blass and Sagan about subarrangements of the...
متن کاملBounds on the coefficients of the characteristic and minimal polynomials
This note presents absolute bounds on the size of the coefficients of the characteristic and minimal polynomials depending on the size of the coefficients of the associated matrix. Moreover, we present algorithms to compute more precise inputdependant bounds on these coefficients. Such bounds are e.g. useful to perform deterministic chinese remaindering of the characteristic or minimal polynomi...
متن کاملCharacteristic Varieties of Arrangements
The k Fitting ideal of the Alexander invariant B of an arrangement A of n complex hyperplanes defines a characteristic subvariety, Vk(A), of the complex algebraic torus (C). In the combinatorially determined case where B decomposes as a direct sum of local Alexander invariants, we obtain a complete description of Vk(A). For any arrangement A, we show that the tangent cone at the identity of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2013
ISSN: 0025-5874,1432-1823
DOI: 10.1007/s00209-013-1165-6